NEARNESS, ACCRETIVITY, AND THE SOLVABILITY OF NONLINEAR EQUATIONS
نویسندگان
چکیده
منابع مشابه
Nearness, Accretivity and the Solvability of Nonlinear Equations
In this paper our propose is to find a common term which is included in the assumptions of theorems proving existence of zeros, implicit functions, fixed points or coincidence points. This new point of view allows us to weaken the assumptions which guarantee the solvability of nonlinear equations and to recommend a possible unified treatment of several classes of operators which appear in the t...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولSolvability of Nonlinear Hammerstein Quadratic Integral Equations
We are concerning with a nonlinear Hammerstein quadratic integral equation. We prove the existence of at least one positive solution x ∈ L1 under Carathèodory condition. Secondly we will make a link between Peano condition and Carathèodory condition to prove the existence of at least one positive continuous solution. Finally the existence of the maximal and minimal solutions will be proved.
متن کاملSome Solvability Theorems for Nonlinear Equations
Let E be a locally convex space and f : E → E a mapping. We say that the equation f(x) = 0 is almost solvable on A ⊂ E if 0 ∈ f(A). In this paper some results about the solvability and almost solvability are given. Our results are based on some classical fixed point theorems and on some geometrical conditions.
متن کاملCharacterization for the Solvability of Nonlinear Partial Differential Equations
Within the nonlinear theory of generalized functions introduced earlier by the author a number of existence and regularity results have been obtained. One of them has been the first global version of the Cauchy-Kovalevskaia theorem, which proves the existence of generalized solutions on the whole of the domain of analyticity of arbitrary analytic nonlinear PDEs. These generalized solutions are ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerical Functional Analysis and Optimization
سال: 2002
ISSN: 0163-0563,1532-2467
DOI: 10.1081/nfa-120014748